5,897 research outputs found

    Liquid oxygen cooling of high pressure LOX/hydrocarbon rocket thrust chambers

    Get PDF
    An experimental program using liquid oxygen (LOX) and RP-1 as the propellants and supercritical LOX as the coolant was conducted at 4.14, 8.27, and 13.79 MN/sq m (600, 1200, and 2000 psia) chamber pressure. The objectives of this program were to evaluate the cooling characteristics of LOX with the LOX/RP-1 propellants, the buildup of the soot on the hot-gas-side chamber wall, and the effect of an internal LOX leak on the structural integrity of the combustor. Five thrust chambers with throat diameters of 6.6 cm (2.5 in.) were tested successfully. The first three were tested at 4.14 MN/sq m (600 psia) chamber pressure over a mixture ratio range of 2.25 to 2.92. One of these three was tested for over 22 cyclic tests after the first through crack from the coolant channel to the combustion zone was observed with no apparent metal burning or distress. The fourth chamber was tested at 8.27 MN/sq m (1200 psia) chamber pressure over a mixture range of 1.93 to 2.98. The fourth and fifth chambers were tested at 13.79 MN/sq m (2000 psia) chamber pressure over a mixture ratio range of 1.79 to 2.68

    Evaluation of Malware Target Recognition Deployed in a Cloud-Based Fileserver Environment

    Get PDF
    Cloud computing, or the migration of computing resources from the end user to remotely managed locations where they can be purchased on-demand, presents several new and unique security challenges. One of these challenges is how to efficiently detect malware amongst files that are possibly spread across multiple locations in the Internet over congested network connections. This research studies how such an environment will impact the performance of malware detection. A simplified cloud environment is created in which network conditions are fully controlled. This environment includes a fileserver, a detection server, the detection mechanism, and clean and malicious file sample sets. The performance of a novel malware detection algorithm called Malware Target Recognition (MaTR) is evaluated and compared with several commercial detection mechanisms at various levels of congestion. The research evaluates performance in terms of file response time and detection accuracy rates. Results show that there is no statistically significant difference in MaTR\u27s true mean response time when scanning clean files with low to moderate levels of congestion compared to the leading commercial response times with a 95% confidence level. MaTR demonstrates a slightly faster response time, by roughly 0.1s to 0.2s, at detecting malware than the leading commercial mechanisms\u27 response time at these congestion levels, but MaTR is also the only device that exhibits false positives with a 0.3% false positive rate. When exposed to high levels of congestion, MaTR\u27s response time is impacted by a factor of 88 to 817 for clean files and 227 to 334 for malicious files, losing its performance competitiveness with other leading detection mechanisms. MaTR\u27s true positive detection rates are extremely competitive at 99.1%

    Abolishment of Remittitur: A Response to the Missouri Supreme Court, The

    Get PDF

    High-pressure calorimeter chamber tests for liquid oxygen/kerosene (LOX/RP-1) rocket combustion

    Get PDF
    An experimental program was conducted to investigate the rocket combustion and heat transfer characteristics of liquid oxygen/kerosene (LOX/RP-1) mixtures at high chamber pressures. Two water-cooled calorimeter chambers of different combustion lengths were tested using 37- and 61-element oxidizer-fuel-oxidizer triplet injectors. The tests were conducted at nominal chamber pressures of 4.1, 8.3, and 13.8 MPa abs (600, 1200, and 2000 psia). Heat flux Q/A data were obtained for the entire calorimeter length for oxygen/fuel mixture ratios of 1.8 to 3.3. Test data at 4.1 MPa abs compared favorably with previous test data from another source. Using an injector with a fuel-rich outer zone reduced the throat heat flux by 47 percent with only a 4.5 percent reduction in the characteristic exhaust velocity efficiency C* sub eff. The throat heat transfer coefficient was reduced approximately 40 percent because of carbon deposits on the chamber wall

    APP Expression in Primary Neuronal Cell Cultures fromP6 Mice during in vitro Differentiation

    Get PDF
    Primary neuronal cell cultures from P6 mice were investigated in order to study amyloid protein precursor (APP) gene expression in differentiating neurons. Cerebellar granule cells which strongly express APP 695 allowed the identification of three distinct isoforms of neuronal APP 695. The high-molecular-weight form of APP 695 is sialylated. The expression pattern of neuronal APP 695 changes during in vitro differentiation. Sialylated forms become more abundant upon longer cultivation time. The secreted forms of sialylated, neuronal APP 695 are shown to comigrate with APP isolated from cerebrospinal fluid. We suggest that the different sialylation states of APP 695 may reflect the modulation of cell-cell and cell-substrate interactions during in vitro differentiation and regeneration

    Quasiperpendicular high Mach number Shocks

    Full text link
    Shock waves exist throughout the universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasi-perpendicular shocks across two orders of magnitude in Alfven Mach number (MA) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted timescale of ~0.3 {\tau}c, where {\tau}c is the ion gyroperiod. In addition, we experimentally reveal the relationship between reformation and MA and focus on the magnetic structure of such shocks to further show that for the same MA, a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming.Comment: Accepted and Published in Physical Review Letters (2015

    Determination of some dominant parameters of the global dynamic sea surface topography from GEOS-3 altimetry

    Get PDF
    The 1977 altimetry data bank is analyzed for the geometrical shape of the sea surface expressed as surface spherical harmonics after referral to the higher reference model defined by GEM 9. The resulting determination is expressed as quasi-stationary dynamic SST. Solutions are obtained from different sets of long arcs in the GEOS-3 altimeter data bank as well as from sub-sets related to the September 1975 and March 1976 equinoxes assembled with a view to minimizing seasonal effects. The results are compared with equivalent parameters obtained from the hydrostatic analysis of sporadic temperature, pressure and salinity measurements of the oceans and the known major steady state current systems with comparable wavelengths. The most clearly defined parameter (the zonal harmonic of degree 2) is obtained with an uncertainty of + or - 6 cm. The preferred numerical value is smaller than the oceanographic value due to the effect of the correction for the permanent earth tide. Similar precision is achieved for the zonal harmonic of degree 3. The precision obtained for the fourth degree zonal harmonic reflects more closely the accuracy expected from the level of noise in the orbital solutions

    GOPEX laser transmission and monitoring systems

    Get PDF
    The laser transmission and monitoring system for the Galileo Optical Experiment (GOPEX) at the Table Mountain Facility (TMF) in Wrightwood, California is described. The transmission system configuration and the data measurement techniques are described. The calibration procedure and the data analysis algorithm are also discussed. The mean and standard deviation of the laser energy transmitted each day of GOPEX show that the laser transmission system performed well and within the limit established in conjunction with the Galileo Project for experiment concurrence

    An analysis of pilot error-related aircraft accidents

    Get PDF
    A multidisciplinary team approach to pilot error-related U.S. air carrier jet aircraft accident investigation records successfully reclaimed hidden human error information not shown in statistical studies. New analytic techniques were developed and applied to the data to discover and identify multiple elements of commonality and shared characteristics within this group of accidents. Three techniques of analysis were used: Critical element analysis, which demonstrated the importance of a subjective qualitative approach to raw accident data and surfaced information heretofore unavailable. Cluster analysis, which was an exploratory research tool that will lead to increased understanding and improved organization of facts, the discovery of new meaning in large data sets, and the generation of explanatory hypotheses. Pattern recognition, by which accidents can be categorized by pattern conformity after critical element identification by cluster analysis

    Gross thermodynamics of two-component core convection

    Get PDF
    We model the inner core by an alloy of iron and 8 per cent sulphur or silicon and the outer core by the same mix with an additional 8 per cent oxygen. This composition matches the densities of seismic model, Preliminary Reference Earth Model (PR-EM). When the liquid core freezes S and Si remain with the Fe to form the solid and excess 0 is ejected into the liquid. Properties of Fe, diffusion constants for S, Si, 0 and chemical potentials are calculated by first-principles methods under the assumption that S, 0, and Si react with the Fe and themselves, however, not with each other. This gives the parameters required to calculate the power supply to the geodynamo as the Earth's core cools. Compositional convection, driven by light O released at the inner-core boundary on freezing, accounts for half the entropy balance and 15 per cent of the heat balance. This means the same magnetic field can be generated with approximately half the heat throughput needed if the geodynamo were driven by heat alone. Chemical effects are significant: heat absorbed by disassociation of Fe and 0 almost nullify the effect of latent heat of freezing in driving the dynamo. Cooling rates below 69 K Gyr(-1) are too low to maintain thermal convection everywhere; when the cooling rate lies between 35 and 69 K Gyr(-1) convection at the top of the core is maintained compositionally against a stabilizing temperature gradient; below 35 K Gyr(-1) the dynamo fails completely. All cooling rates freeze the inner core in less than 1.2 Gyr, in agreement with other recent calculations. The presence of radioactive heating will extend the life of the inner core, however, it requires a high heat flux across the core-mantle boundary. Heating is dominated by radioactivity when the inner core age is 3.5 Gyr. We, also, give calculations for larger concentrations of O in the outer core suggested by a recent estimation of the density jump at the inner-core boundary, which is larger than that of PREM. Compositional convection is enhanced for the higher density jumps and overall heat flux is reduced for the same dynamo dissipation, however, not by enough to alter the qualitative conclusions based on PREM. Our preferred model has the core convecting near the limit of thermal stability, an inner-core age of 3.5 Gyr and a core heat flux of 9 TW or 20 per cent of the Earth's surface heat flux, 80 per cent of which originates from radioactive heating
    corecore